Pitot-Static System Maintenance and Tests
Ever wonder how your airspeed indicator works? The answer lies within a basic system called the piot-static system,
which measures ram air pressure and compares it to static pressure to indicate the aircraft's speed through the air. And that's not all it tells you. This same static air system gives us our altitude and tells us how fast we're climbing or descending in feet per minute. The pitot-static system supplies power to three basic aircraft instruments: The airspeed indicator, altimeter, and vertical speed indicator.
Why test
Water trapped in a pitot static system may cause inaccurate or intermittent indications on the pitot-static flight instruments. This is especially a problem if the water freezes in flight. Many systems are fitted with drains at the low points in the system to remove any moisture during maintenance. Lacking this, dry compressed air or nitrogen may be blown through the lines of the system. Always disconnect all pitot-static instruments before doing so and always blow from the instrument end of the system towards the pitot and static ports. This procedure must be followed by a leak check described below. Systems with drains can be drained without requiring a leak check. Upon completion, the technician must ensure that the drains are closed and made secure in accordance with approved maintenance procedures.
which measures ram air pressure and compares it to static pressure to indicate the aircraft's speed through the air. And that's not all it tells you. This same static air system gives us our altitude and tells us how fast we're climbing or descending in feet per minute. The pitot-static system supplies power to three basic aircraft instruments: The airspeed indicator, altimeter, and vertical speed indicator.
Why test
Water trapped in a pitot static system may cause inaccurate or intermittent indications on the pitot-static flight instruments. This is especially a problem if the water freezes in flight. Many systems are fitted with drains at the low points in the system to remove any moisture during maintenance. Lacking this, dry compressed air or nitrogen may be blown through the lines of the system. Always disconnect all pitot-static instruments before doing so and always blow from the instrument end of the system towards the pitot and static ports. This procedure must be followed by a leak check described below. Systems with drains can be drained without requiring a leak check. Upon completion, the technician must ensure that the drains are closed and made secure in accordance with approved maintenance procedures.
Aircraft pitot-static systems must be tested for leaks after the installation of any component parts or when system malfunction is suspected. It must also be tested every 24 months if on an IFR certified aircraft intended to be flown as such as called out in 14 CFR section 91.411. Licensed airframe and A&P technicians may perform this test.
The method of leak testing depends on the type of aircraft, its pitot-static system, and the testing equipment available. [Figure] Essentially, a testing device is connected into the static system at the static vent end, and pressure is reduced in the system by the amount required to indicate 1,000 feet on the altimeter. Then, the system is sealed and observed for 1 minute. A loss of altitude of more than 100 feet is not permissible. If a leak exists, a systematic check of portions of the system is conducted until the leak is isolated. Most leaks occur at fittings. The pitot portion of the pitotstatic system is checked in a similar fashion. Follow the manufacturer’s instructions when performing all pitot-static system checks.
In all cases, pressure and suction must be applied and released slowly to avoid damage to the aircraft instruments. Pitot-static system leak check units usually have their own built-in altimeters. This allows a functional cross-check of the aircraft’s altimeter with the calibrated test unit’s altimeter while performing the static system check. However, this does not meet the requirements of 14 CFR section 91.411 for altimeter tests.
Upon completion of the leak test, be sure that the system is returned to the normal flight configuration. If it is necessary to block off various portions of a system, check to be sure that all blanking plugs, adaptors, or pieces of adhesive tape have been removed.
Post a Comment
Spam Not Allowed. We accepting Guest Posts. Any Doubts write us mail@kasworld-aero.ml